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LETTER TO THE EDITOR 

Dynamics of domain growth in degenerate conserved 
and non-conserved systems 

Yoshihisa Enomoto, Tomoaki Aokage and Katutaka Isibasi 
Department of Physics. Faculty of Science. Nagoya University, Nagoya464-01. Japan 

Received29October 1991 

Abstract. We numerically study the time-dependent behaviour af domain growth in quen- 
ched systems with multiply degenerate ordered states. Based on the phenomenologirdl 
model equations for such degenerate systems recently proposed by Enomoto et al. we 
perform two-dimensional computer simulations for triply degenerate systems both with a 
conserved and a non-conserved order parameter, respectively. In particular. we discuss the 
asymptotic scaling behaviour for the systems and the corresponding growth exponents for 
the characteristic length scales. 

Dynamics of domain growth of quenched systems with multiply degenerate ordered 
states has attracted increasing attention in many areas of physics 111. After a quench of 
degenerate systems such as Cu,Au and Ni,Mn alloys [2], clusters of the ordered phases 
appear within a matrix of a disordered phase. The individual clusters are in any of the 
p-allowed ordered states,p being the degree of degeneracy for ordered phases. As time 
goes by, the isolated clusters grow in size and meet each other. The resulting system is 
then composed of ordered domains in different ordered states, separated by domain 
walls (called a cellular structure) [2]. These cellular structures can be seen in a wide 
variety of materials, ranging from metal films to lipid monolayers and magnetic bubbles 

To study the coarsening of such cellular structures, two different computational 
models have been proposed. One is the kinetic p-state Potts model for a conserved [3] 
and a non-conserved system [4,5]. The other is the vertex model for a non-conserved 
system 16.71. Performing computer simulations of the above two models, many authors 
have intensively studied the growth exponent of the average domain size, the scaling 
behaviour of a domain size distribution function, and their degeneracy dependence. On 
the other hand, the asymptotic scaling behaviour of the scattering structure factor (SSF) 
for these degenerate systems has been investigated little in contrast to non-degenerate 
systems [S, 91. 

Recently, we proposed the continuum dynamical model for multiply degenerate 
systems [lo, 111, which can deal with not only the late stage coarsening of cellular 
structures but also the preceding ordering process of ordered states. In our previous 
work, we simulated the model equation for multiply degenerate non-conserved systems 
to visualize the pattern formation of growing domains [lo]. We also obtained the time 
dependence of the average domain size and the scaling behaviour of the domain size 
distribution function [Ill. which are similar to those by the above two models. In this 
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letter, we thus focus on the long term behaviour of SSF in multiply degenerate systems 
both for a conserved and a non-conserved order parameter, respectively. As a first step, 
we restrict ourselves here to triply degenerate systems. 

Our startingequation is the continuum version of the p-state vector Potts model. Let 
g(r ,  f) E F(r, f) exp(iS(r, t ) )  be the complex scalar field at position r and time t .  The 
amplitude F(r, r )  of g(r, I )  has a positive value and distinguishes stable ordered states 
from the disordered ones, while the phase variable S(r, r )  describes differences among 
the multiply degenerate ordered states. We assume that the equation describing the 
dynamics of the system considered here can be written as [lo. 111: 

ag(r, t)/at = -L( - iV)n(SG(g)/Gg*) (1) 

where (Y = 2 corresponds to a conserved system and a = 0 to a non-conserved onc, 
respectively, L is a positive constant. and the asterisk denotes the complex conjugate. 
The coarse-grained free energy functional G(g) is a functional of g(r, t )  and is taken to 
be [lo] 

with 

U 
W(g) = -lgl* + 4IgY - 2p k? + g * P )  (3) 

(4) 
F4 U 

= -F? + ---FP cos@S) 
2 P  

where p is a positive integer corresponding to the number of degeneracy for ordered 
states, and U is a positive constant. It is found that if 0 < U <A,, W(g) has p-fold 
degenerate minima at (Fe ,  Si), j = 0.1,. . . , p  - 1 with 

-1 + Fg - oFZS2 = 0 ( 5 )  

h, S, = -1 
P 

where A, isdefined byequation (4) in reference [ll]. Note that in the present model the 
thermal noise is neglected and nucleation cannot be dealt with. Note also that the 
dynamicsofaquenched non-conserved system with a continuoussymmetry (no degener- 
acy) has been studied intensively on the basis of a similar model (but U = 0 in (3)) [S, 91. 

We numerically solve equations (1)-(3) with p = 3. using the standard implicit 
formula on a N 2  square lattice with periodic boundary conditions. We have also set the 
time step Af = 0.05, the lattice spacing Ax = Ay = 1, U = 0.4, and L = 1.0. Inorder to 
solve the dynamical equation for the complex variable, it is convenient to use two real 
fields, A(r ,  t )  and B(r,  t ) ,  defined by g = A + iB, rather than the amplitude and phase 
variable of g [ill. Initially at each lattice site It, both real and imaginary parts of the 
order parameter are chosen to be different Gaussian random numbers with average 0 
and variance 0.1, respectively, which effectively represent disordered states. 
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Figure 1. Domain growth in a triply degenerate sys- 
tem with a conserved order parameter. + denotes a 
disordered lattice site. See the text. 

Figure 2. Domain growth in a triply degenerate sys- 
tem with a non-conserved order parameter. + 
denotes a disordered lattice site. See the text. 

In figures 1 and 2 we show the time evolution of the systems with N = 64 for a 
conservedand anon-conservedcase, respectively. In these figures, the disordered lattice 
site n is marked by +, where the disordered site is characterized by the site with F(n, r ) /  
Fe<0.90rlS(n,t) - S,l> n/12,j= 0,1,2.Fromthesefigures,wecanseetheemergence 
and growth of ordered clusters and the subsequent coarsening process among ordered 
domains. Note that as was pointed out in reference [3], the average domain size of the 
conserved system seems to he smaller than that of the non-conserved one. 

In the following, in order to discuss the asymptotic properties of quenched multiply 
degenerate systems, we simulate the model equation using a 2562 square lattice. More- 
over, the following results are obtained by averaging over 50 independent simulation 
runs. Here we study the scaling behaviour of the normalized and circular averaged SSF, 
I (k ,  t ) .  defined as [9] 

I(k,  t )  = S ( k ,  r)/x k2S(k,  r) 

S(k, I )  = ~2 [ ( 1  x A(n,  t) elk." I *) + ( 1  x B(n,  r )  e'"" I ')] 

k E E kZ(k, r)/E I(k, r )  

(7) 
k 

with 
1 

(8) " " 
where the bracket (. . ,)denotes the circular average in k space for k = Ikl[9]. In figures 
3 and 4 we show the scaled SSF, k21(k, t), plotted against the reduced wave number k /k  
at various times for the conserved and the non-conserved systems, respectively. Here 
the average wave number k is defined by 

(9)  

where the summations are taken over 0 < k < n [9]. The time evolutions of the charac- 
teristic length scale, E-', are plotted for both systems in figure 5. In our simulations we 
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Figure 3. Scaled scattering structure factor i!I(k. 1)  
%ersus k l k  for a conserved system at times I = 500 
(A),  lOOO(U)and5000(0). lOO(A),5W(D)and IO'(@). 

Figure 4. Scaled scattering structure factor @l(k ,  i j  
versus k/k for a non-conserved system at times I = 

10'1 

Figure?. Time evolution of the characteristic length 
scales k-' for a conserved (A)  and a non-conserved 
(C) systems. Straight lines are alsoshown with slopes 
indicated. 

found that the characteristic length scale grows in time t as t' with z = 0.32 i 0.02 for 
the COIIServed system and z = 0.51 i 0.03 for the non-conserved one, and for both 
systems the SSF obeys the asymptotic scaling law. The above values of the growth 
exponent are common to those of many models for quenched non-degenerate systems 
for the conserved and the non-conserved order parameters. respectively. Moreover, we 
have checked that the scaling behaviour of SSF seems to be valid for f > to (in the 
present simulations, tu = 400 for the Conserved order parameter and tu = 30 for the non- 
conserved one), where to is a time at which the volume fraction of ordered lattice sites 
becomes larger than 0.7. 

In summary, we have numerically studied the dynamical behaviour after a quench 
in triply degenerate systems both with the conserved and the non-conserved order 
parameter. We have found that even the ordering process of quenched systems with 
triply degenerate ordered states obeys the asymptotic dynamical scaling law, similar to 
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that of non-degenerate systems, with the growth exponent z of the characteristic length 
scale beingabout 1/3for theconservedsystem andabout 1/2for the non-conservedone, 
respectively. In the present letter, we have, however, simulated only a p = 3 system. 
Further simulations are thus needed, changing the degree of degeneracyp and/or the 
parameter U. Moreover, the detailed forms of the scaled function of SSF and comparison 
of them with those of non-degenerate systems are interesting, as well as the degeneracy 
dependenceofthescaledfunction and thegrowthexponent. Theseproblemsstillremain 
open to us. 
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